Making Sense of Actuators
What is an actuator?
An “actuator” can be defined as a device that converts energy (in robotics, that energy tends to be electrical) into physical motion. The vast majority of actuators produce either rotational or linear motion. For instance, a “DC motor” is therefore a type of actuator.
Choosing the right actuators for your robot requires an understanding of what actuators are available, some imagination, and a bit of math and physics.
Rotational Actuators
As the name indicates, this type of actuators transform electrical energy into a rotating motion. There are two main mechanical parameters distinguishing them from one another: (1) torque, the force they can produce at a given distance (usually expressed in N•m or Oz•in), and (2) the rotational speed (usually measured in revolutions per minutes, or rpm).
AC Motor
DC Motors
To incorporate a motor into a robot, you need to fix the body of the motor to the frame of the robot. For this reason motors often feature mounting holes which are generally located on the face of the motor so they can be mounted perpendicularly to a surface. DC motors can operate in clockwise (CW) and counter clockwise (CCW) rotation. The angular motion of the turning shaft can be measured using encoders or potentiometers.
Geared DC Motors
R/C Servo Motors
R/C (or hobby) servo motors are types of actuators that rotate to a specific angular position, and were classically used in more expensive remote controlled vehicles for steering or controlling flight surfaces. Now that they are used in a variety of applications, the price of hobby servos has gone down significantly, and the variety (different sizes, technologies, and strength) has increased.
The common factor to most servos is that the majority only rotate about 180 degrees. A hobby servo motor actually includes a DC motor, gearing, electronics and a rotary potentiometer (which, in essence, measures the angle). The electronics and potentiometer work in unison to activate the motor and stop the output shaft at a specified angle. These servos are generally have three wires: ground, voltage in, and a control pulse. The control pulse is usually generated with a servo motor controller. A “robot servo“ is a new type of servo that offers both continuous rotation and position feedback. All servos can rotate CW and CCW.
Industrial Servo Motors
Stepper Motors
Adding gears to a stepper motor has the same effect as a adding gears to a DC motors: it increases the torque and decreases the output angular speed. Since the speed is reduced by the gear ratio, the step size is also reduced by that same factor. If the non geared down stepper motor had a step size of 1.2 degrees, and you add a gear down of 55:1, the new step size would be 1.2 / 55 = 0.0218 degrees.
Linear Actuators
A linear actuator produces linear motion (motion along one straight line) and have three main distinguishing mechanical characteristics: the minimum and maximum distance the rod can move “a.k.a. the “stroke”, in mm or inches), their force (in Kg or lbs), and their speed (in m/s or inch/s).
DC Linear Actuator
Solenoids
Muscle wire
Pneumatic and Hydraulic
Choosing an Actuator
To help you with the selection of an actuator for a specific task, we have developed the following questions to guide you in the right direction.
It is important to note that there are always new and innovative technologies being brought to market and nothing is set in stone. Also note that an single actuator may perform very different task in different contexts. For instance, with additional mechanics, an actuator that produces linear motion may be used to rotate an object and vice versa (like on a car’s windshield wiper).
(1) Is the actuator being used to move a wheeled robot?
Drive motors must move the weight of the entire robot and will most likely require a gear down. Most robots use “skid steering” while cars or trucks tend to use rack-and-pinion steering. If you choose skid steering, DC gear motors are the ideal choice for robots with wheels or tracks as they provide continuous rotation, and can have optional position feedback using optical encoders and are very easy to program and use. If you want to use rack-and-pinion, you will need one drive motor (DC gear is also suggested) and one motor to steer the front wheels). For stirring, since the rotation required is restricted to a specific angle, an R/C servo would be the logical choice.
(2) Is the motor being used to lift or turn a heavy weight?
Lifting a weight requires significantly more power than moving a weight on a flat surface. Speed must be sacrificed in order to gain torque and it is best to use a gearbox with a high gear ratio and powerful DC motor or a DC linear actuator. Consider using system (either with worm gears, or clamps) that prevents the mass from falling in case of a power loss.
(3) Is the range of motion limited to 180 degrees?
If the range is limited to 180 degrees and the torque required is not significant, an R/C servo motor is ideal. Servo motors are offered in a variety of different torques and sizes and provide angular position feedback (most use a potentiometer, and some specialized ones use optical encoders). R/C servos are used more and more to create small walking robots.
(4) Does the angle need to be very precise?
Stepper motors and geared stepper motors (coupled with a stepper motor controller) can offer very precise angular motion. They are sometimes preferred to servo motors because they offer continuous rotation. However, some high-end digital servo motors use optical encoders and can offer very high precision.
(5) Is the motion in a straight line?
Linear actuators are best for moving objects and positioning them along a straight line. They come in a variety of sizes and configurations. Muscle wire should be considered only if your motion requires very little force. For very fast motion, consider pneumatics or solenoids, and for very high forces, consider DC linear actuators (up to about 500 pounds) and then